

Next-Gen Technologies for Leather Sector: Approaches towards Industry 4.0., Central Leather Research Institute (CLRI), Chennai.

TANNERY WASTEWATER TREATMENT & MANAGEMENT

SILVANO STORTI,

CEO - EUROPROGETTI SRL.,

PADOVA, ITALY.

- Europrogetti S.r.l., is a company, which offers more than 30 years of design and management experience in water treatment plants. This experience has allowed us to update and develop best technological solutions in terms of process efficiency, cost management and choice of the equipment quality, offering plants with a reuse of the treated water of 98% in the production process up to the "Zero Discharge" plant.
- Europrogetti has a great experience in the purification from different sectors, such as tanning, textile, paper, food and chemical industry, slaughterhouses, beverages, etc.
- Our systems are able to treat volumes of wastewater from 50 to 300,000 m³/day and adopt technological solutions studied for the specific production requirements and the various kinds of wastewater.
- Europrogetti can also offer a service of supervision and management of the installed systems, ensuring the maintenance of the management costs, quality and quantity of the treated water.

- IWT & RS is a sister concern of Europrogetti S.r.l., Italy specially started for wastewater business in India.
- This company not only involves in installing new plants but also operates and maintains wastewater plants all over India.
- IWT & RS offers a full O & M service to ensure water quality and running cost control.

Our References

CONCERIA LEONICA Kind of industry Flow Kind of plant

CONCERIA AECO Kind of industry Flow Kind of plant

ANZOLIN Kind of industry Flow Kind of plant

CONCERIA AGO Kind of industry Flow Kind of plant

CONCERIA FAEDA Kind of industry Flow Kind of plant

CONCERIA AGOSTI Kind of industry Flow Kind of plant Lonigo - VI - Italy All round tanning 500 m³/g Biological

S.M. Buonalbergo - VR - Italy All round tanning 700 m³/g Biological

Grancona - VI - Italy leather dyeing 500 m³/g Chemical physical

Lonigo - VI - Italy All round tanning 450 m³/g Biological

Chiampo - VI - Italy All round tanning 300 m³/g Biological

Castelgomberto - VI - Italy Wet blue 100 m³/g Biological

Our References

CONCERIA FABRIS Kind of industry Flow Kind of plant

CONCERIA BASSANESE Kind of industry Flow Kind of plant

CONCERIA ZONTA Kind of industry Flow Kind of plant

SCAMOSCERIA del BRENTA Kind of industry Flow Kind of plant

IGUALADA - Spain Kind of industry Flow Kind of plant

MONTEBELLO Kind of industry Kind of plant

ARZIGNANO Kind of industry Kind of plant Vicenza - VI - Italy Fine tanning - wet blue 700 m³/g Chemical physical + Biological

Vicenza - VI - Italy All round tanning 800 m³/g Chemical physical + Biological

Tezze s/Brenta - VI - Italy All round tanning 400 m³/g Chemical physical + Biological

Tezze s/Brenta - VI - Italy Wet blue 300 m³/g Chemical physical + Biological

Spain Mixed water from tannery + Civil water 25.000 m³/g Design of the adjustment from chemicalphysical to biological

Montebello – VI - Italy Municipality plant Discontinuous consultation for upgrading

Arzignano – VI - Italy Municipality plant Discontinuous consultation for upgrading

- In Italy, the environmental problems linked to the tanning industry have been chiefly tackled by the two biggest districts Arzignano and S.Croce, since the mid seventies.
- In particular, the Arzignano district is well known in the world for its product quality which has around 500 tanneries with an annual turnover of 25,000 crore rupees and a daily wastewater discharge quantity of around 15,000 m³.
- The environmental impact of these tanneries have been know from 70s which in turn helped to undertand a long evolution of tannery wastewater treatment technology and management.

1974:

Homogenization stage with chemicalphysical treatment

Investment = 3.000.000 \$

1976:

Addition of the first biological treatment to further lower the COD discharged from chemical-physical treatment

Investment = 2.500.000 \$

1978:

Further extension of the Biological stage, in particular the final sedimentation.

Again only to lower COD.

1980:

Extension of Homogenization stage, Chemical – Physical treatment stage and sludge treatment line.

Investment = 7.500.000 \$

1984:

Extension of industrial biological line with separation of the industrial and domestic sewer water effluents, lowering of nitrate compounds (9000 m³ denitrification 28000 m³ nitrification) and final flotation instead of final sedimentation.

Investiment = 8.500.000 \$

Arzignano – At present

CETP Arzignano - average discharge parameters

PARAMETER	U.M.	INPUT VALUES	OUTPUT VALUES
РН		9-11	6.5 - 8.5
COD	mg/l	6,000 - 7,000	160 - 180
BOD ₅	mg/l	3,000 - 3,500	40
SST	mg/l	3,500 - 4,000	40 - 60
TKN	mg/l	450 - 500	20 - 40
NH ₄	mg/l	250 - 300	1 - 2
NO ₂	mg/l		0.2
NO ₃	mg/l		15
CHROMIUM VI	mg/l	ASS.	N.R.
CHROMIUM Tot.	mg/l	100 - 120	0.3 - 0.5
CHLORIDES *	mg/l	3,500	3,500
SULPHATES *	mg/l	2,000	2,000
SULPHIDE	mg/l	100 - 150	Trace
TENSIOACTIVES	mg/l	40 - 50	0.2
OILS AND GREASES	mg/l	150 - 200	10

Dhaka

Layout for revamping

Layout for revamping

Screening

- Screening is the first unit operation used at wastewater treatment plants (WWTPs).
- Screening removes coarse and mediumfine solids to prevent damage and clogging of downstream equipment, piping, and accessories.
- Typical opening sizes for screens are 1.5 to 6 mm (0.06 to 0.25 in)

Neutralization with flue gas

- In the chimney's flue gas, produced by the combustion of natural gas, naphtha and gas oil, there is a 6 12% concentration of CO_2 , which can be used for neutralization.
- In addition, the sulphur content in the flue gas combines with condensate to form dilute sulfuric acid which further helps neutralization.
- When inlet pH is very high, the use of chimney smokes reduces a lot neutralization costs instead the use of sulphuric acid.

Neutralization with flue gas

The advantages of using flue gas are:

- Possibility of using CO₂ at zero cost and avoiding GHG emission;
- Impossibility of super-acidify discharges over the limit value of 7.5 – 8;
- The concentration of SO₄ or Cl⁻ already present in the waste is not increased.
- The use of smoke chimney reduces the concentration of TDS with consequent reduction of cost for RO and quantity of crystallized salt in MEE.

Biological oxidation

 $COD + O_2 + NH_3 \xrightarrow{\text{Bacteria}} New cells + CO_2 + H_2O$

- The carousel tank has the great advantage due to its optimal mixing and a perfect oxidation through the use of big size flow-makers.
- In addition, with the help of micro-bubbles air-diffusers allows to reduce the power absorbed from blowers of at least 25%.

Biological oxidation

Nitrification – Denitrification

- Nitrification is the biochemical oxidation of ammonia nitrogen by means of autotrophic aerobic bacteria whereas Denitrification is the process by which nitrates are reduced to gaseous nitrogen through the action of facultative heterotrophs bacteria, under anoxic conditions.
- The speed of growth ("yield") of the nitrifying bacteria is much slower than the heterotrophic bacteria, which increases the sludge age and hydraulic residence time.

Denitrification

- For the Denitrification process, it is necessary that the nitrates produced in the aerobic tank are then recirculated to the anoxic tank.
- So, the **recirculation rate** should ensure the amount of nitric nitrogen, pumped to the anoxic reactor is suitably greater than that which must be removed.
- In addition, the recirculation of the activated sludge from the MBR ensures the sufficient concentration of biomass in the tank.

Denitrification

This process ensures:

- A sufficient amount of organic load as energy source (electron donor), coming from the water to be treated and, thereby, an increase of the denitrification speed;
- >A partial reduction of the inlet organic load (from 30 to 50%) to the next stage of biological oxidation;
- >A partial balancing of the consumption of alkalinity which is present in the next nitrification phase;
- ➢ Better sedimentation of sludge;
- ➤The reduction of nitrates without any dosage of extra carbon.

Water characteristics

PLANT UNIT	U.M.	Inlet Water PRE BIO TECH		NITRO - DENITRO
Daily flow rate	m3/day	1000	1000	1000
COD	ppm	3500	2500	500
BOD5	ppm	2000	1200	100
TDS	ppm	15000	15000	15000
рН		12.0	8.0	
Temperature	°C	30		
Colour	Pt/Co	1000	500	500
TKN	ppm	400	250	20
Phosphorous	ppm	50	25	10
Surfactants	ppm	40	20	2
TSS	ppm	2000	200	100
Total Hardness	ppm CaCO3	300	250	250
Alkalinity	ppm CaCO3	1000	800	
Na+	ppm	6600	6600	6600
CI-	ppm	9500	9500	9500
SO42-	ppm	800	800	800
Iron	ppm	2.5	1.0	1.0
Silica	ppm	50	30	30
Oil and greases	ppm	100	60	2
Ca2+	ppm	200	200	200

MBR

- The aim of MBR system is to replace sedimentation step with a filtration stage which allows to completely remove the suspended solids.
- Technical advantages of using MBR are:
 - Due to the shorter hydraulic retention time (HRT), it permits to treat greater wastewater flows in a lower space.
 - It also allows an easier control of a constant flow and a more effective treatment.

MBR

- complete removal of suspended solids and increase of concentration of activated sludge; in this way, we obtain greater consumption of incoming organic load, longer age of sludge with a great reduction of excess sludge.
- the output water after MBR is quite similar to the one produced with ultrafiltration systems, having values of SDI less than 5 and with molecular size of about 0.05 micron, which makes it suitable for the feeding of RO membranes.
- really compact treatment units, allowing so future expansions of the plant, lower environmental impact, lower maintenance costs, more available space for other usages.

Water characteristics

PLANT UNIT	U.M.	Inlet Water	PRE BIO TECH	NITRO - DENITRO	MBR out
Daily flow rate	m3/day	1000	1000	1000	1000
COD	ppm	3500	2500	500	150
BOD5	ppm	2000	1200	100	15
TDS	ppm	15000	15000	15000	15000
рН		12.0	8.0		7.5
Temperature	°C	30			30
Colour	Pt/Co	1000	500	500	300
TKN	ppm	400	250	20	10
Phosphorous	ppm	50	25	10	5
Surfactants	ppm	40	20	2	1
TSS	ppm	2000	200	100	1
Total Hardness	ppm CaCO3	300	250	250	250
Alkalinity	ppm CaCO3	1000	800		1000
Na+	ppm	6600	6600	6600	6600
Cl-	ppm	9500	9500	9500	9500
SO42-	ppm	800	800	800	800
Iron	ppm	2.5	1.0	1.0	0.5
Silica	ppm	50	30	30	30
Oil and greases	ppm	100	60	2	0
Ca2+	ppm	200	200	200	200
					100%

1/30/2019

MBR – Performance control

Softener

- One of the most important water quality parameters in industrial applications is the hardness which is the sum of Ca²⁺ and Mg²⁺ ions which are present in the water.
- If untreated, this hardness causes fouling in the RO membranes.
- Softener lowers the value of hardness using ion exchange resin where the calcium and magnesium ions gets trapped when the water flows through the resin.

Degasser

- Degassing is a process that allows the carbon dioxide (formed during softening process) removal, through a decarbonating tower.
- The consequent reduction of TDS in the treated effluent involves a further advantage in the subsequent RO treatment.

Water characteristics

PLANT UNIT	U.M.	MBR out SF Out		Degaser Out RO Inlet
Daily flow rate	m3/day	1000	1000	1000
COD	ppm	150	150	150
BOD5	ppm	15	15	15
TDS	ppm	15000	14500	14000
рН		7.5	5.0	5.0
Temperature	°C	30	30	30
Colour	Pt/Co	300	300	300
TKN	ppm	10	10	10
Phosphorous	ppm	5	5	5
Surfactants	ppm	1	1	1
TSS	ppm	1	1	1
Total Hardness	ppm CaCO3	250	10	10
Alkalinity	ppm CaCO3	1000	700	50
Na+	ppm	6600	6600	6600
Cl-	ppm	9500	9500	9500
SO42-	ppm	800	800	800
Iron	ppm	0.5	0.5	0.1
Silica	ppm	30	30	30
Oil and greases	ppm	0	0	0
Ca2+	ppm	200	10	10
		100%	100%	100%

RO

 Reverse osmosis is part of the "membrane filtration" processes, which exploit particular properties of semipermeable membranes that work as selective barriers, by allowing the passage of some constituents present in the water, and by keeping others.

RO

Water characteristics

PLANT UNIT	U.M.	Degaser Out RO Inlet	RO Permeate	RO reject
Daily flow rate	m3/day	1000	800	200
COD	ppm	150	5	750
BOD5	ppm	15	1	75
TDS	ppm	14000	250	81000
рН		5.0	5.0	7.0
Temperature	°C	30	30	30
Colour	Pt/Co	300	0	1500
TKN	ppm	10	0	50
Phosphorous	ppm	5	0	25
Surfactants	ppm	1	0	5
TSS	ppm	1	0	5
Total Hardness	ppm CaCO3	10	0.1	50
Alkalinity	ppm CaCO3	50	10	220
Na+	ppm	6600	110	31000
CI-	ppm	9500	150	31000
SO42-	ppm	800	5	4700
Iron	ppm	0.1	0	1
Silica	ppm	30	0.5	150
Oil and greases	ppm	0	0	0
Ca2+	ppm	10	0.04	50
		100%	80%	20%

RO – delta P

DELTA P - I st stage I Bank (bar)

RO – membrane weight

RO – Recovery

RO – Recovery

Saturator

 The main purpose of the saturator is to reduce the silica concentration of the RO reject. So, the reject can be sent to Nano filtration to recover the brine without damaging the membranes.

Ultrafiltration

- Treatment with ultrafiltration membranes can separate the colloids present to 0.1 microns in diameter, included organics that are present in the RO reject.
- This reduction of colloids allows extending the useful life of Nano filtration membranes up to three years, reducing significantly the cost of spare modules.

Water characteristics

PLANT UNIT	U.M.	RO reject	Saturator + UF Out
Daily flow rate	m3/day	200	200
COD	ppm	750	400
BOD5	ppm	75	30
TDS	ppm	81000	84000
рН		7.0	7.0
Temperature	°C	30	30
Colour	Pt/Co	1500	700
TKN	ppm	50	30
Phosphorous	ppm	25	5
Surfactants	ppm	5	2
TSS	ppm	5	5
Total Hardness	ppm CaCO3	50	15
Alkalinity	ppm CaCO3	220	300
Na+	ppm	31000	33000
CI-	ppm	31000	36000
SO42-	ppm	4700	5000
Iron	ppm	1	1
Silica	ppm	150	60
Oil and greases	ppm	0	0
Ca2+	ppm	50	20
		20%	20%

Nanofiltration

- By using selective membranes, it is possible to separate the salt content in the rejection of the RO.
- The separated salt has a high degree of purity and can be fully used in the industrial processes.
- This solution minimizes the cost of salt purchase and reduces dramatically the costs of the concentrate evaporation, allowing recovering more water.

Water characteristics

PLANT UNIT	U.M.	Saturator + UF Out	NANO Perm.	NANO reject
Daily flow rate	m3/day	200	150	50
COD	ppm	400	200	1000
BOD5	ppm	30	15	75
TDS	ppm	84000	75000	110000
рН		7.0	6.0	6.0
Temperature	°C	30	30	30
Colour	Pt/Co	700	0	2100
TKN	ppm	30	3	100
Phosphorous	ppm	5	1	15
Surfactants	ppm	2	1	6
TSS	ppm	5	0	15
Total Hardness	ppm CaCO3	15	1	45
Alkalinity	ppm CaCO3	300	35	400
Na+	ppm	33000	30000	40000
CI-	ppm	36000	45000	48000
SO42-	ppm	5000	100	19000
Iron	ppm	1	0	0
Silica	ppm	60	60	60
Oil and greases	ppm	0	0	0
Ca2+	ppm	20	0.26	100
		20%	15%	5%

Wind evaporator

- It is a new evaporator with lower energy cost (4-5 times lower) compared to the present systems allows to evaporate and concentrate the brine for their reuse.
- Our evaporators have 0 chemical emissions and don't foresee the use of steam.
- The energetic consumption is very less which is equal to 12-15 kW/m³ of evaporated water.
- The indication of carbon dioxide released per m³ of treated water is 15 times lower compared to the conventional systems.

Wind evaporator

Water characteristics

PLANT UNIT	U.M.	NANO reject	Softener regenration reject	Wind evaporator inlet	Wind evaporator outlet/MEE inlet
Daily flow rate	m3/day	50	6	56	30
COD	ppm	1000	0	893	893
BOD5	ppm	75	0	67	67
TDS	ppm	110000	25000	100893	165000
рН		6.0	1.0	5	5
Temperature	°C	30	30	30	30
Colour	Pt/Co	2100	0	1875	1875
TKN	ppm	100	0	89	89
Phosphorous	ppm	15	0	13	13
Surfactants	ppm	6	0	5	5
TSS	ppm	15	0	13	13
Total Hardness	ppm CaCO3	45	25000	2719	2719
Alkalinity	ppm CaCO3	400	0	357	357
Na+	ppm	40000	0	35714	35714
CI-	ppm	48000	26250	45670	45670
SO42-	ppm	19000	0	16964	16964
Iron	ppm	0	0	0	0
Silica	ppm	60	30	57	57
Oil and greases	ppm	0	0	0	0
Ca2+	ppm	100	17500	1964	1964
		5%	1%	6%	3%

MEE

- In MEE, the saturation of a solution occurs with the solution evaporation, through a series of evaporators that operate at pressures gradually decreasing.
- Evaporators are connected each other, so that the steam developed by one of them constitutes the heating fluid for the next one.
- Condensate is then reused in the industrial process, while the crystallized salts will be disposed off.

PVA

- Europrogetti has set up a system, capable to treat the PVA used in the industrial process.
- This system can be used in the Zero Liquid Discharge wastewater treatment, and it can also prevent problems to the RO membranes, making them to last at least 3-4 years.

Scheme 1: STP ECSB (<u>External</u> <u>Circulation</u> <u>Sludge</u> <u>B</u>ed)

PVA

DryWa

- DryWa is an innovative system for the management of biological sludge deriving from water purification processes, capable of reducing the volume of sludge up to 95%.
- Thanks to technical and management innovations, biological sludge is dried through an accelerated process and then burned.
- The DryWa System reduces electrical costs and CO₂ emissions, since the whole process is powered only by sludge combustion with a low environmental impact.

DryWa

1/30/2019

Chromium recovery

Hair recovery

 The hair removing, during phases of liming, leads to strong reduction in the organic load going to the biological process.

• As a consequence, this process reduces the energy costs due to the less oxygen supply for the biomass.

Sulphur recovery

Sulphur recovery

FINANCIAL & O&M OVERVIEW

O&M ETP – STUDY OF ZLD SYSTEM (Q 2000 m³/DAY)

AVERAGE O&M COST ON 10 WORKING YEARS

O&M – Ordinary + Extraordinary costs in 10 years

COST ANALYSIS OF THE PLANT PHASES ORDINARY PLUS STRAODINARY

[INR/year]

_	1	2	3	4	5	6	7	8	9	10
Smoke	20.909.548	23.206.399	25.503.249	27.800.099	30.096.950	32.393.800	34.690.650	36.987.501	39.284.351	41.581.201
Biological	48.461.593	49.558.825	50.656.057	51.753.289	57.360.601	53.947.753	55.044.985	56.142.217	62.083.608	58.336.680
Belt press	1.454.851	1.612.484	2.062.918	1.927.752	2.430.985	2.243.019	2.799.052	2.558.286	3.167.120	2.873.553
DRYWA	13.629.900	14.495.694	15.361.488	16.227.282	17.093.076	19.518.870	18.824.664	19.690.458	20.556.252	21.422.046
MBR	4.208.657	4.662.009	5.115.361	5.568.714	6.022.066	6.475.418	33.586.511	7.382.122	7.835.475	8.288.827
Softner	3.642.840	4.040.353	4.437.865	4.835.378	5.232.890	12.326.402	6.027.915	6.425.427	6.822.940	7.220.452
Degaser	3.389.649	3.759.310	4.128.971	4.498.633	4.868.294	5.237.955	5.607.617	5.977.278	6.346.940	6.716.601
Reverse Osmosis	19.831.858	22.002.962	24.174.066	26.345.171	35.981.235	30.687.379	32.858.484	35.029.588	46.946.613	39.371.797
Saturator	2.651.967	2.941.284	3.230.600	3.519.916	3.809.233	4.098.549	4.387.865	4.677.182	4.966.498	5.255.815
Ultrafiltration reject	1.693.778	1.876.494	2.059.209	2.241.925	4.728.640	2.607.356	2.790.072	2.972.787	6.163.503	3.338.218
Nanofiltration	2.727.457	3.027.477	3.327.497	3.627.518	3.927.538	7.172.558	4.527.578	4.827.599	5.127.619	5.427.639
-										
TOTAL	122.602.098	131.183.291	140.057.283	148.345.675	171.551.508	176.709.060	201.145.393	182.670.445	209.300.917	199.832.830

O&M – Ordinary + Extraordinary costs in 10 years

BUSINESS PLAN ON THE REALIZATION OF NEW ZLD PLANT

O&M COST ON EXISTING PLANT						
INR/m³ m³/day INR/day CRORES/Year €/Year						
ACTUAL O&M COST BEFORE MEE	400	2.000	800.000	28	3.500.000	
ACTUAL MEE O&M COST	677	1.100	744.700	26	3.258.063	
TOTAL				54	6.758.063	

GENERAL FLOW SCHEME WITH NANOFILTRATION

TDS: 17.000 ppm

O&M COST ON NEW ZLD PLANT						
INR/m³ m³/dayINR/dayCRORES/Year						
NEW ZLD O&M COST BEFORE MEE	240	2.000	480.960	17	2.104.200	
MEE O&M COST NEW ZLD	407	117	47.619	2	208.333	
TOTAL				19	2.312.533	

SAVING ON O&M COST

TOTAL SAVING WITH NEW SOLUTION

TOTAL SAVING ON ETP O&M - BEFORE MEE TOTAL SAVING ON MEE O&M TOTAL SAVING ON BRINE RECOVERY

TOTAL SAVING

Crores/year	€/Year
11	1.395.800
24	3.049.729
4	503.125

40	4.948.654

PAYBACK OF NEW PLANT

	CUMULATIVE COST INVESTMENT PLUS YEARLY O&M		Difference
	Existing Recovery System	New Recovery System	NEW> EXSISTING
	Crores/Year	Crores/Year	Crores/Year
New ZLD Plant Capital cost	0,00	43,60	43,60
After 1 year	54,06	58,08	4,01
After 2 year	108,13	72,55	-35,58
After 3 year	162,19	87,03	-75,17
After 4 year	216,26	101,50	-114,76
After 5 year	270,32	115,98	-154,35
After 6 year	324,39	130,45	-193,94

Payback of the recovery system	1,1	Years
Saving on 6 years	193,94	Crores

THANKS FOR YOUR ATTENTION!!