

Sustainability Initiatives

Prasanna Maduri, Campus Manager Lerig ,Chennai 30,January, 2019

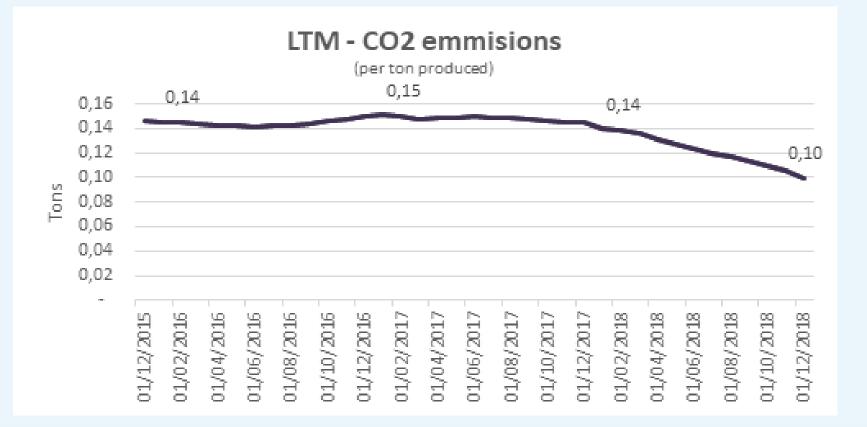
Agenda

- Renewable Energy Sourcing.
- Life Cycle Assessment (LCA)
- Reduction of Carbon Footprin,
- Role of Chemicals Energy savings

1.Renewable Energy

Renewable Energy Sourcing.

- Grey to Green Energy Initiatives- Stahl.
- Green energy solar, wind, biomass or other renewable sources.
- Switching energy sourced for our (4) European plants from


- Energy sourcing has changed over the years from fossil fuel based energy to green energy and recent shift to solar energy at our Stahl Brasil facility.
- India's renewable energy sourcing at stahl factories as well.
- Over the last 5 years we have switched all the energy sourced for our (4) European plants from "grey" energy to "green" energy.

over

- The environmental benefit of green energy vs grey energy sourcing - Reduction in CO2 emissions.
- Green energy means zero CO2 emissions, grey energy is fossil fuel, so we have to report the equivalent amount of burned fuel, which means CO2 emissions.
- Enclosed is a graph that shows the progressive improvement in our CO2 emissions over recent years, is mostly because of our policy of sourcing green energy.

- In Brasil, Portao plant, we just started with the installations of solar panels already can supply 40-50% of the energy used at this site-Solar panels installed on the roof.
- Plans to extend solar panel usage at our India, Singapore,Spain factories,where we have a lot of sun.
- The long term goal is to have selfsufficient energy at our sites, which is not just better for the environment but also more secure against power shortages

• Installation of 2225 photovoltaic modules

• 50% Solar Energy before 2020

Time line Stahl Brazil Instalation:

21th June – Start of EP

20th July – EP approval

31st August – Oficial Purchase Orders

12th September – Start of Final Engineering Projetc

24th September – Arriving of Materials in Portão Plant

27th September – Start of installations

28th October – 100 solar modules running on-grid Cantine

30th October – 300 solar modules running on-grid Technical Center A900

28th November – 95 solar modules running on-grid Maintenance 228 solar modules running on-grid A130 (Waterbase)

1st December – 305 solar modules running on-grid A360 (Warehouse)

10th December – 322 solar modules running on-grid A320 (Warehouse)

PROJECT

Cantine – 100 solar modules

A900 - Technical Center/ CSD - 300 solar modules

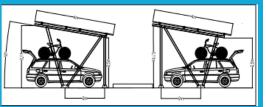
A130 – Waterbase plant - 228 solar modules

A360 – RAW MATERIAL WAREHOUSE – 305 solar modules

A320 – FINISH PRODUCTS WAREHOUSE - 322 solar modules

On-line monitoring:

Consumption monitoring



Generation monitoring

Parking Lot – 240 solar modules

A310 Raw-Material Warehouse 183 solar modules

Ground place 300 solar modules

Budget date for Conclusion: 25th January '19

2. Life Cycle Assessment (LCA)

Life Cycle Assessment (LCA)

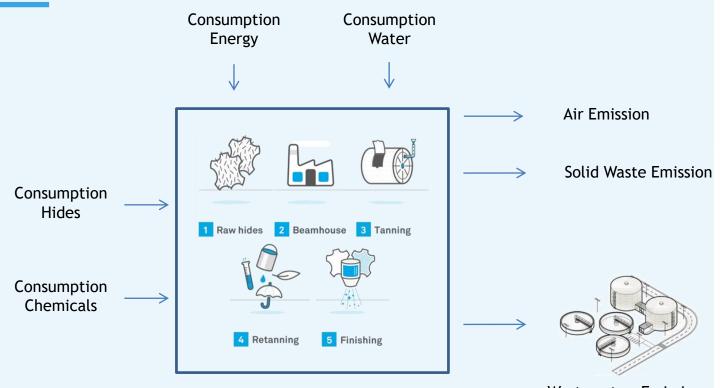
- Methodology and terminology
- What is measured and reported
- Environmental impact data & categories
- Environmental Product Declaration (EPD)
- Product Category Rules & boundaries
- Example tannery chemicals
- Summary

Methodology, terminology

- A system is available to capture the environmental impact of leather
- Product Category Rules are defined (European Commission)
- Life Cycle Analysis calculates environmental impact
- Complete leather process is quantified
- Cradle to Gate approach

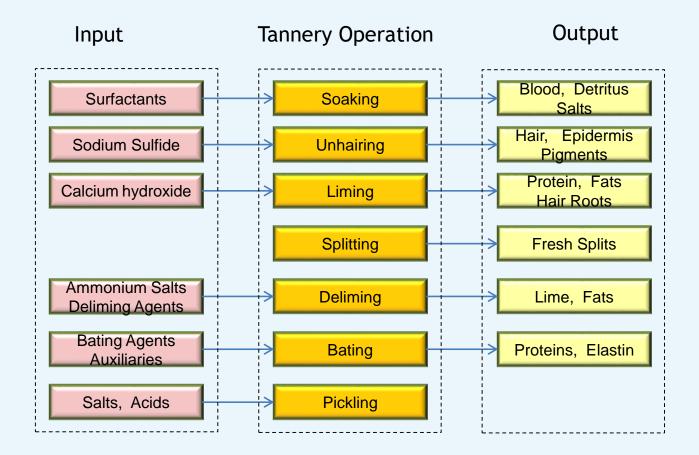
Measuring, Reporting

- Life Cycle Inventory (LCI) data is collected for the process
- Resource consumption and manufacturing emissions are measured
- Environmental Impact Data is calculated (Life Cycle Software)
- Results are reported in well known environmental language
- Output is an Environmental Product Declaration (EPD)

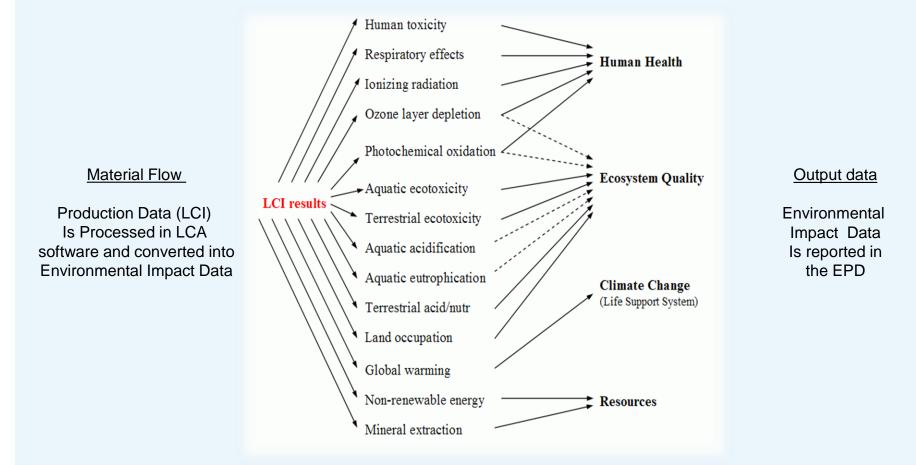


Material flows

- Measuring Inputs & Outputs is known as Life Cycle Inventory (LCI)
- Input (consumption)
 - Chemicals
 - Resources
- Output (Emission)
 - Waste products
 - Effluent


Leather process

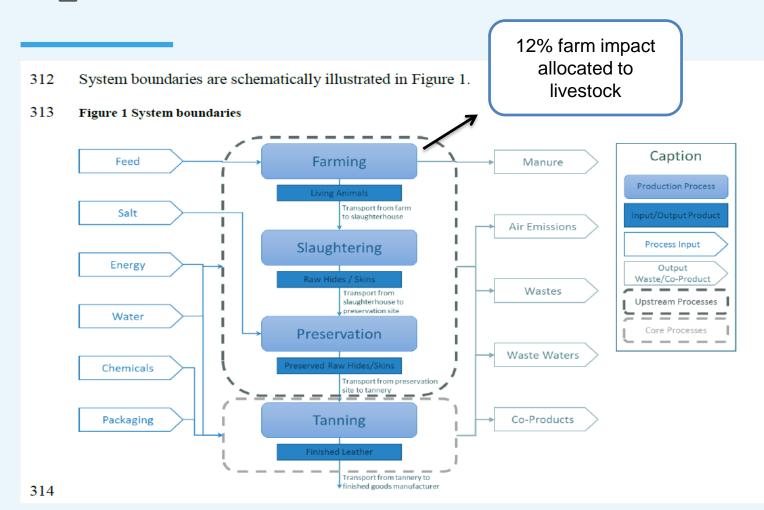
Wastewater Emission



Beamhouse example

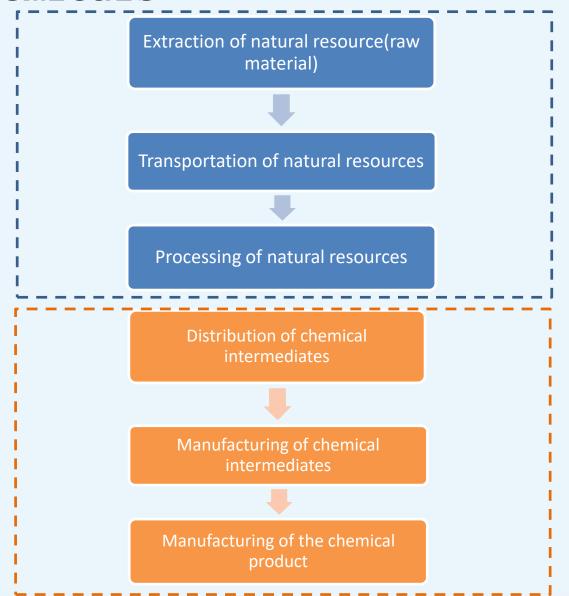
Converting LCI data

Impact Categories



Product Category Rules

- Product Category Rules (PCR or PEFCR) represent the specific LCA guidelines as applied to a narrow field of use
- Leather PCR was developed by COTANCE, ICT, UNIC
- Leather PCR defines the system boundary information
- LCA begins at farming and ends at tannery discharge



System boundaries

Environmental Impact of Tanning chemicals

Tanning chemical EPD

Environmental Product Declaration based on Product Category Rules

Potential environmental impact per declared unit	Unit	Upstream	Core	Downstream	TOTAL
Acidifcation Potential (AP)	kg SO2 eq	0,009	0,001	_	0,009
Global Warming Potential (GWP100)	kg CO2 eq	1,413	0,151	_	1,564
Eutrophication Potential (EP)	kg P04 eq	0,003	1,48E - 04	_	0,003
Photochemical Ozone Creation Potential (POCP)	kg C2H4 eq	4,25E-04	3,10E- 05	_	4,56E- 04
Ozone Depletion Potential (ODP)	kg CFC-11 eq	4,32E-07	1,92E- 08	_	4,51E- 07

LCA Methodology

Summary

- LCA methodology represents an important development for leather
- The EC framework and Product Category Rules allow for valid comparisons to be made
- New processes/chemistry will require LCA data in order to be valid
- As tanners become LCA modelled, impact analysis will improve

3. Reduction of Carbon Footprint- Process Time

- Shorter process time lowers energy consumption for a smaller carbon footprint.
- A lower effluent load in water output leads to energy savings in waste treatment efforts.
- **Pickle-Free:** Whatever the % reduction in energy can be achieved using better processes, skipping pickling etc., then the same % reduction in carbon footprint (C02 emissions) will also be achieved.
- Energy savings are dependent on using special chemicals.
- Similarly, by minimizing water effluent load, overall environmental footprint can be reduced, and this can be calculated using an LCA methodology.

4. Role of Chemicals

- Energy savings by using highly penetrative auxiliaries, chemicals whereby reduction in energy.
- By skipping the pickling step, energy is reduced significantly.
- Using higher performing topcoats, less coating can be applied to get the same properties
- Lower performing coatings, thereby reducing the energy required to dry/cure them.

We believe that if it can be imagined, it can be created.